element1 webtheme
element2

REFERENCES

Askenazi, M. et al. (2011) iprg 2011: A study on the identification of electron transfer dissociation (etd) mass spectra. Journal of Biomolecular Techniques: JBT, 22(Supplement), S20.

Ballardini, R. et al. (2011) A novel alignment tool for label-free liquid chromatographymass spectrometry proteomic data. J. Chromatogr. A, 1218, 8859-8868.

Bellew, M. et al. (2006) A suite of algorithms for the comprehensive analysis of  complex protein mixtures using high-resolution LC-MS. Bioinformatics, 22(15), 1902-9.

Craig, R. and Beavis R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(Issue. 9), 1466-1467.

Cox, J. et al. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome. R., 10(4), 1794-1805.

Cox, J. et al. (2011) Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors. J. Am. Soc. Mass Spectrom, 22(8), 1373-1380.

Cui,J. et al. (2011) SCFIA: a statistical corresponding feature identification algorithm for LC/MS. BMC Bioinformatics,12, 439.

Eng, J. K. et al. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. the American Society for Mass Spectrometry, 5(11), 976-989.

Geiger, T. et al. (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nature Methods, 7, 383-385.

Jaitly, N. et al. (2006) Robust Algorithm for Alignment of Liquid Chromatography- Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis

Pipeline. Anal Chem, 78(21), 7397-7409. Kong, X and Reilly, C. (2009) A Bayesian approach to the alignment of mass spectra. Bioinformatics, 25(Issue. 24), 3213-3220.

Kottom, J. T. and Limper H. A. (2011) Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology. Yeast, 28(10), 707-719.

LaMarche, L. B. et al. (2013) MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis. BMC Bioinformatics, 14(49) doi:10.1186/1471-2105-14-49

Lange,E. et al. (2008) Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics,9,375.

Lin, H. et al. (2013) A combinatorial approach to the peptide feature matching problem for label-free quantification. Bioinformatics, 29(14), 1768-1775.

Meyer, D. et al. (2003) The support vector machine under test. Neurocomputing, 55(1-2), 169-186.

Mortensen, P. et al. (2010) MSQuant, an open source platform for mass spectrometrybased quantitative proteomics. J. Proteome. R, 7(9), 393-403.

Mueller, N. L. et al. (2008) SuperHirn- a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics, 7(19), 3470-80.

Nagaraj, N. et al. (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra hplc runs on a bench top orbitrap. Molecular and Cellular Proteomics, 11(3).

Neelamani, R. N. et al. (2004) ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. Signal Processing, IEEE Transactions on, 52(2), 418-433.

Neilson, K. A. et al. (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 11, 535-553.

Palmblad, M. et al. (2007) Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction. J. A. S. Mass Spectrum, 18(10), 1835-1843.

Pasa-Toli, L. et al. (2004) Proteomic analyses using an accurate mass and time tag strategy. Biotechniques, 37(4), 621-633.

Perkins, D. N. et al. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(Issue. 18), 3551-3567.

Pluskal, T. et al. (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11( 395), doi:10.1186/1471-2105-11-395.

Prince, J. T. and Marcotte, E. M. (2004)Chromatographic alignment of ESI-LCMS proteomics data sets by ordered bijective interpolated warping. Analytical Chemistry, 78, 6140-52.

Podwojski, K. et al. (2009) Retention time alignment algorithms for LC/MS data must consider non-linear shifts. Bioinformatics, 25, 758-764.

Sandin, M. et al. (2013) Data processing methods and quality control strategies for label-free LC?MS protein quantification. Biochim.Biophys.Acta, doi: 10.1016/j.bbapap.2013.03.026.

Silva,S.J. et al. (2006) Simultaneous Qualitative and Quantitative Analysis of the Escherichia coli Proteome. Molecular and Cellular Proteomics,5, 589-607.

Sturm, M. et al. (2008) OpenMS - An open-source software framework for mass spectrometry. BMC bioinformatics, 9(163), doi:10.1186/1471-2105-9-163.

Vandenbogaert, M. et al. (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics, 8, 650-672.

Vonesch, C. et al. (2007) Generalized DaubechiesWavelet Families. Signal Processing, IEEE Transactions on, 55(9), 4415-4429.

Voss, B. et al. (2010) SIMA: Simultaneous Multiple Alignment of LC/MS Peak Lists.

Bioinformatics, 27(7), 987-993. Wang, J. and Lam, H. (2013) Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry datasets. Bioinformatics, 29(19), 2469-2476.

Zhang, J. et al. (2009) Review of peak detection algorithms in liquid-chromatographymass spectrometry. Current Genomics, 10, 388-401.

Zhenqiu, L. et al. (2010) Sparse Support Vector Machines with L-p Penalty for Biomarker Identification. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 7(1), 100-107.